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We present a detailed theoretical study of adiabatic Cooper-pair pumping in a one-dimensional array of
Cooper-pair boxes and discuss its experimental feasibility. The Josephson tunneling and the gate voltage are
two adiabatic couplings of our system. Using the concept of Berry phase and Abelian bosonization, we show
that the evolution of the ground state follows a closed loop in the flux-voltage plane. Its adiabatic motion yields
the Cooper-pair pumping in the system. We find the condition for blocking the Cooper-pair pumping even in
the perfect pumping condition.
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I. INTRODUCTION

The physics of adiabatic pumping has received more at-
tention after the pioneering work of Thouless.1,2 The physics
of quantum adiabatic pumping is relevant to many systems,
such as open quantum dots,3–5 superconducting quantum
wires,6,7 Josephson junctions,8–10 Luttinger quantum wire,11

interacting quantum wire,12 and also the quantum spin
pump.13

An adiabatic parametric quantum pump is a device that
generates a dc by a cyclic variation in system parameters, the
variation being slow enough that the system remains close to
the ground state throughout the pumping cycle. The propa-
gation of locking potential well in this adiabatic pumping
system has arranged either directly through the propagation
of real acoustoelectric wave14,15 or by a phase shifted gate
voltage.16–18 It is well known that when a quantum-
mechanical system evolves, it acquires a time-dependent dy-
namical phase and time-independent geometrical phase.19

The geometrical phase depends on the geometry of the path
in the parameter space. In the adiabatic Cooper-pair pumping
�CPP� process, the locking potential well carries a quantized
number of Cooper pairs. As the locking potential well slides
through the adiabatic variation in system parameters, it in-
duces a current �I� in the system. The relation between the
frequency �f� with which the locking potential well crosses
the system and induce current is I= �2ne�f where 2ne is the
total charge of the Cooper pairs. The quantization of the
Cooper pair is caused by the existence of the energy gap in
the excitation spectrum of the array of Cooper-pair boxes
�CPBs�, which makes the locking potential well to be deep
enough for the exact n number of Cooper pair in the CPB.

Here we discuss very briefly the basic mechanism of adia-
batic CPP for a single CPB with two superconducting quan-
tum interference devices �SQUIDs� �acting as a terminal,
Fig. 1 of Ref. 20�. The charge state of the superconducting
island can be modulated through gate voltage �Vg� and the
Josephson coupling �EJ0� through applied external flux. One
can express the basic Hamiltonian of the system as a spin
Hamiltonian, when Ec�EJ0. The Hamiltonian of this system
at the charge degeneracy point is H=− 1

2Bz�z− 1
2Bx�x, where

Bz=4Ec�1−2ng� and Bx=2EJ0 cos� ��
�0

�. Here, ng is the gate
voltage induce charge in the superconducting island. � is the
external flux and �0 is the flux quantum. At the charge de-

generacy regime the relevant states of the system are zero
�spin-up� or one �spin-down� Cooper pair in the box. Two
adiabatic parameters of the Hamiltonian �H� are Bz and Bx.
These parameters are modulated periodically through the
pulse sequence in the gate voltage and in the SQUID. These
adiabatic variations of Hamiltonian parameters generate a
locking potential which causes the trapped quantized number
of Cooper-pair transport in a single CPB with two SQUIDs,
as we discuss in the previous paragraph. This process gener-
ates the current �I=2ef�. The Cooper-pair transport is
achieved only when the number of Cooper pairs in the su-
perconducting island fluctuates under the pumping process.

Here we consider the perfect pumping condition. The er-
ror in the pumping procedure arises due to current reversal
and spontaneous charge excitations. In Ref. 20, the authors
have discussed the sources and minimization of errors �the
nonadiabatic correction leave the system in an unknown su-
perposition of the charge state, instead of definite charge
state�. In this Brief Report, we would like to give a detailed
theoretical foundation of Ref. 20 based on Berry phase and
Abelian bosonization study to explain the experimental pro-
posal.

II. MODEL HAMILTONIANS AND CONTINUUM FIELD
THEORETICAL STUDY

Now our prime interest is to give a theoretical foundation
of the experimental proposal of Ref. 19. The authors of Ref.
20 have given the experimental proposal of this adiabatic
CPP for which we provide a theoretical foundation based on
rigorous analytical derivation. Their system consists of N
CPBs.

The nearest neighbors are coupled with dc-SQUIDS. The
leftmost and rightmost islands are coupled to the reservoirs
via other Squids as shown in Fig. 1. This figure is nothing
but a collection of tunable Josephson couplings and the elec-
trostatic potential of superconducting island in a CPB.20–22

The relevant quantum degree of freedom of CPB is the
charge of the Cooper pair of that island. As the system also at
the Coulomb blocked regime �Ec�EJ0�, the authors of Ref.
19 have considered the single electron transistor �SET� as a
natural choice of this measurement device. They have pro-
posed to use SET as a dephasing element.23 It should be
biased every time with a short voltage pulse to maintain the
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definite charge state in every pumping process. It is very
clear from our discussion of adiabatic CPP that in every
pumping process system transports a definite number of
Cooper pairs. Therefore the presence of SET in this super-
conducting circuit proposed by them is an essential ingredi-
ent of this superconducting circuit. The adiabatic CPP in the
linear array of N CPBs is nothing but the generalization of
the pumping scheme which we describe in the introduction
for one CPB with two terminals. The electrostatic energy of
the system can be expressed as

E = �
i

Ec�i��ni − ng�i��2 + �
i

Em�i,i+1��ni − ng�i���ni+1 − ng�i+1�� .

�1�

Here Ec�i� and Em�i,i+1� are, respectively, the charging energy
and the electrostatic couplings between two islands, respec-
tively. We are interested in the charge degeneracy point, i.e.,
when the gate charge is close to 1/2, the lowest energy states
are characterized by either zero or one Cooper pair on each
island. With this assumption one can reduce the Hilbert space
and map the system to a finite anisotropic Heisenberg spin-
1/2 chain in an external magnetic field.20 In the spin lan-
guage the Cooper-pair pumping is nothing but the transport
of spin �Jordan-Wigner fermions� from one end of the chain
to the other end. They have defined the Hamiltonian20

H2 = − Bx
1Sx

1 − Bx
NSx

N − �
i

N

Bz
iSz

i

+ �
i=1

N−1

��i,i+1Sz
iSz

i+1 − Ji,i+1�S+
i S−

i+1 + S+
i+1S−

i �� , �2�

where Si=x,y,z
N represents x ,y ,z component for spin-1/2 par-

ticle at the Nth site of the system; S+ and S− are the spin
raising and lowering operator. �i,i+1 is the constant electro-
static coupling amplitude. Bx

1,N the Josephson coupling of the
leftmost and rightmost SQUIDs. Bz

i is the electrostatic poten-
tial of the island and Ji,i+1 is the Josephson coupling between
the neighboring islands. We are interested in the charge de-

generacy point, at this point the most favorable states of the
system are the antiferromagnetic configurations ��010101¯�
and �101010¯��. We start with one of the antiferromagnetic
states and transfer the charge of every island to the right by
two sites to achieve pumping. We implement it by applying
identical pulse sequence to every second island.20 In our the-
oretical analysis, we consider the Josephson couplings for
even and odd sites as, respectively, EJ1

=EJ0
�1−�1�t�� and

EJ2
=EJ0

�1+�1�t��. �1�t� is one of the adiabatic parameter
which modulated the Josephson coupling of the supercon-
ducting island, which deviates the Josephson coupling from a
mean value EJ0

. We also consider a difference between the
charging energies between the odd and even sites. The charg-
ing energies of even and odd sites are, respectively,
Bz1=B0�1−�2�t�� and Bz2=B0�1+�2�t��. �2�t� is the other
adiabatic parameter which modulated the on-site charging
energy of the superconducting island, which deviates the Jo-
sephson coupling from a mean value EC0. We would like to
write the Hamiltonian in terms of spin operators,

H2 = − �
n

EJ0
�S+

nS−
n+1 + S+

n+1S−
n�

+ �
n

EJ0
�− 1�n�1�t��S+

nS−
n+1 + S+

n+1S−
n� + �

n

�Sz
nSz

n+1

−
1

2�
n

B0Sz
n +

1

2�
n

B0�− 1�n�2�t�Sz
n. �3�

The parametric relation between Eqs. �2� and �3� are the
following: Bx

1=J2,3=J4,5=Je,o=Ej1 and Bx
N=J1,2=J3,4=Jo,e

=Ej2. Je,o and Jo,e are the even-odd and odd-even Josephson
couplings, respectively. Bz

i is Bz1 for the even sites and Bz2 is
for the odd sites. One can map spin chain systems to spinless
fermion systems through the application of Jordan-Wigner
transformation. In Jordan-Wigner transformation, the relation
between the spin and the electron creation and annihilation
operators are Sn

z =�n
†�n−1 /2, Sn

−=�n exp�i�� j=−�
n−1 nj�, and

Sn
+=�n

† exp�−i�� j=−�
n−1 nj�,24 where nj =� j

†� j is the fermion
number at site j,

H2 = −
EJ0

2 �
n

��n+1
† �n + �n

†�n+1�

+
EJ0

2 �
n

�− 1�n�1�t���n+1
† �n + �n

†�n+1�

+ ��
n

��n
†�n − 1/2���n+1

† �n+1 − 1/2�

−
B0

2 �
n

��n
†�n − 1/2� +

B0

2 �
n

�− 1�n�2�t���n
†�n − 1/2� .

�4�

Here, we would like to explain the basic aspects of quantum
CPP in terms of spin pumping physics of our model Hamil-
tonians. An adiabatic sliding motion of one-dimensional po-
tential in gapped Fermi surface pumps an integer numbers of
particle per cycle. In our case the transport of Jordan-Wigner
fermions is nothing but the transport of spin from one end of
the chain to the other end because the number operator of

JL J R
n n n1 2 N

SET

C Cg
g

SET SET

Cg

Vg V
g g

1 2
V
N

J12

FIG. 1. The stabilized Cooper-pair pumping system. Identical
pulse sequence is applied to every alternate superconducting island.
SET is the single electron transistors, they are biased with short
voltage pulses every time. The leftmost and rightmost islands are
coupled to the reservoirs. ni is the number of Cooper pair at the ith
site. Vg and Cg are, respectively, gate voltage and capacitance of
each CPB. A circle with two crosses represents the Josephson junc-
tion. This schematic diagram mimics the physics of Hamiltonian
H2.
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spinless fermions is related with the z component of spin
density.25

The first term of the Hamiltonian H2 produces the linear
energy dispersion and a proper choice of B0 produces two
Fermi points for the system. We see that nonzero, �1�t� and
�2�t�, introduces the gap at around the Fermi point and the
system is in the insulating state �Peierls insulator�. It is well
known that the physical behavior of the system is identical at
these two Fermi points. We would like to analyze this double
degeneracy point following the seminal paper of Berry.19 In
our model Hamiltonian there are two adiabatic parameters
�1�t� and �2�t�. The Hamiltonian starts to evolve under the
variation in these two adiabatic parameters, when the Hamil-
tonian returns to its original form after a time T, the total
geometric phase acquire by the system is 	n�T�
= i

2��C	�n��R��n�dR, a line integral around a closed loop in
two-dimensional �2D� parameter space. Using Stokes theo-
rem, one can write 	n�T�= i

2���R
 	�n��R��n�dS, the flux �
through a closed surface C is �=�B ·dS. Therefore one can
think the Berry phase as flux of a magnetic field. Now we
express, Bn�K1�=�K1
An�K1� and An�K1�
= i

2� 	n�K1���K1�n�K1��, where K1= �k ,�1�t� ,�2�t��. Here Bn
and An are the fictitious magnetic field �flux� and vector po-
tential of the nth Bloch band, respectively. The degenerate
points behave as a magnetic monopole in the generalized
momentum space,19 whose magnetic unit can be shown to be
1. Analytically �S1dS ·B�= �1 positive and negative signs of
the above equations are, respectively, for the conduction and
valance bands meeting at the degeneracy points.13,19 S1 rep-
resent an arbitrary closed surface which encloses the degen-
eracy point. In the adiabatic process the parameters �1�t� and
�2�t� change along a loop ��� enclosing the origin �minimum
of the system�. We define the expression for spin current �I�
from the analysis of Berry phase. Then according to the
original idea of quantum adiabatic particle transport,1,2,13,26,27

the total number of spinless fermions �I� which are trans-
ported from one side of this system to the other is equal to
the total flux of the valance band, which penetrates the 2D
closed sphere �S2� spanned by the � and Brillioun zone,13,26

I = 

S2

dS · B+1 = 1, �5�

where B+1 is directly related with the Berry phase �	n�T��
which is acquired by the system during the adiabatic varia-
tion in the Josephson coupling and the on-site charging en-
ergy over the time period of the adiabatic process. The above
equation implies that the Cooper-pair current is finite and
constant through out the system. This quantization is topo-
logically protected against the other perturbation as long as
the gap along the loop remains finite.13,26,27

We recast the spinless fermions operators in terms of field
operators by this relation

��x� = �eikFx�R�x� + e−ikFx�L�x�� , �6�

where �R�x� and �L�x� describe the second-quantized fields
of right-moving and left-moving fermions, respectively. We
want to express the fermionic fields in terms of bosonic field
by this relation

�r�x� =
Ur

�2�
e−i�r��x�−��x��, �7�

where r denotes the chirality of the fermionic fields: right �1�
or left movers �−1�. The operators Ur commute with the
bosonic field. Ur of different species commute and Ur of the
same species anticommute. � field corresponds to the quan-
tum fluctuations �bosonic� of spin and � is the dual field of
�. Using the standard machinery of continuum field theory,24

we finally get the bosonized Hamiltonians as

H2 = H0 +
EJ0

�1�t�

2�22 
 dx:cos�2�K��x��:

+
B0�2�t�

2�

 dx:cos�2�K��x��:

+
�

2�22
 dx:cos�4�K��x��:−
B0

2

 dx�x��x� , �8�

where H0 is the gapless Tomonoga-Luttinger liquid part of
the Hamiltonian. The second term of the Hamiltonian origi-
nates from the X and Y components of exchange interactions.
This term implies that infinitesimal variation in Josephson
coupling in lattice sites is sufficient to produce a gap around
the Fermi points. The third term of the Hamiltonian arises
due to the site-dependent on-site charging energies modu-
lated by the gate voltage. The effect of applied gate voltage
on the CPB appears as an effective magnetic field and also as
a staggered magnetization �antiferromagnetic ordering in the
X-Y plane� in the spin representation of the model Hamil-
tonian. The system is in the mixed phase when both interac-
tions �second and third terms of the Hamiltonian� are equal
in magnitude otherwise the system prefers to stay one of the
states of the mixed phase depending on the strength of the
couplings. The last term can be absorbed in the Hamiltonian
through the proper shifting of the wave function. So when
1 /2�K�1, only �second and third coupling terms of the
Hamiltonian are relevant.� time-dependent Josephson cou-
pling and on-site charging terms are relevant and lock the
phase operator at �= n�

�K
�n is integer�. Now the locking po-

tential slides adiabatically, with speed low enough that sys-
tem stays in the same valley, i.e., there is no scope to jump
onto on other valley. The system acquires a phase 2� during
one complete cycle of varying adiabatic parameters. This is
the basic mechanism of CPP of our system. This expectation
is easily verified when we notice the physical meaning of the
phase operator ���x��. Since the spatial derivative of the
phase operator corresponds to the z component of spin den-
sity �Cooper-pair density�, this phase operator is nothing but
the minus of the spatial polarization of the z component of
spin, i.e., Psz =− 1

N� j=1
N jSj

z. Shindou13 has shown explicitly the
equivalence between these two models. During the adiabatic
process 	�t� changes monotonically and acquires a phase
−2�. In this process Ps

z increases by 1 per cycle. We define it
analytically as
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�Ps
z = 


�

dPs
z = −

1

2�

 dx�x	��x�� = 1. �9�

This physics always holds as far as the system is locked
by the sliding potential and ��1.13,26 The change in the
spatial polarization by unity during a complete evaluation of
adiabatic cycle implies that the transport of Cooper pair
across the system. This is because the spatial derivative of
the phase operator is the Cooper-pair density in our system.
The quantized Cooper-pair transport of this scenario can be
generalized up to the value of � for which K is greater than
1/2. In this limit, the sine-Gordon coupling term due to an-
isotropy interaction term ��� is irrelevant and the gap of the
system is due to the adiabatic variation in �1�t� and �2�t�. But
when K�1 /2, then the interaction due to � becomes rel-
evant and creates a gap in the excitation spectrum. This po-
tential profile is static. Therefore there is no scope to slide

the potential and to get an adiabatic pumping across the
system.

III. CONCLUSIONS

We have given the theoretical foundation of adiabatic
CPP, proposed in Ref. 20, based on Berry phase and Abelian
bosonization methods. We have also found the blocking con-
dition for adiabatic CPP even in the perfect pumping condi-
tion, a different finding. The physical explanation of adia-
batic Cooper-pair pumping �based on Eqs. �5�, �8�, and �9��
is absent in Ref. 20.
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